Rainfall prediction system with predictors of temperature humidity, wind speed and air temperature using r programming language
Main Article Content
Abstract
Rainfall is a climatic factor that can affect human survival, especially in the agricultural sector. Lubuklinggau City is one of the agricultural areas in the province of South Sumatra. Information about rainfall is needed by farmers in Lubuklinggau City. In determining planting time, generally farmers in the city of Lubuklinggau are only based on observing conditions, without looking at information about climate or rainfall. This is caused by the lack of information about rainfall provided by the government. A prediction system is a system that can process or estimate systematically about something that is most likely to happen in the future based on past and present information that is owned, so that the error (the difference between something that happened and the estimated result) can be minimized. Generally in a prediction system there is a calculation method used. One method that is often used in prediction systems is multiple linear regression. Multiple linear regression analysis was carried out to determine the direction and how much influence the independent variables have on the dependent variable. From the research results, the test values obtained were MSE (Mean Squere Error) = 0.8206, RMSE (Root Mean Squere Error) = 0.9059 and MAPE (Mean Absolute Percentage Error) = 39.886. Based on the calculation results mape value is equal to 39.886.
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
T. P. Purboningtyas, A. H. Dharmawan, and E. I. K. Putri, “The Impact of Climate Variability on The Livelihood Structure of Farmers Households and Patterns of Adaptation,” Sodality: Jurnal Sosiologi Pedesaan, vol. 6, no. 3. 2019, doi: 10.22500/sodality.v6i3.21514.
A. Izzah and R. Widyastuti, “Prediksi Harga Saham Menggunakan Improved Multiple Linear Regression untuk Pencegahan Data Outlier,” Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control. pp. 141–150, 2017, doi: 10.22219/kinetik.v2i3.268.
F. J. Kaunang, R. Rotikan, and G. S. Tulung, “Pemodelan Sistem Prediksi Tanaman Pangan Menggunakan Algoritma Decision Tree,” CogITo Smart Journal, vol. 4, no. 1. p. 213, 2018, doi: 10.31154/cogito.v4i1.115.213-218.
S. C. Wohon, D. Hatidja, and N. Nainggolan, “Penentuan Model Regresi Terbaik Dengan Menggunakan Metode Stepwise ( Studi
Kasus : Impor Beras Di Sulawesi Utara ) Determining the Best Regression Model Using Stepwise Method ( Case Study : Rice Imports in North Sulawesi ),” Jurnal Ilmiah Sains, vol. 17, no. 2. p. 81, 2017.
S. Sulistyono and W. Sulistiyowati, “Peramalan Produksi dengan Metode Regresi Linier Berganda,” PROZIMA (Productivity, Optimization and Manufacturing System Engineering), vol. 1, no. 2. pp. 82–89, 2017, doi: 10.21070/prozima.v1i2.1350.
A. Setiawan and Z. Zarenuddin, “Sistem Peminjaman Barang Inventaris Media Perkuliahan Berbasis Qrcode Sebagai Pendamping Sistem Konvensional Untuk Pengelolaan Barang,” Technologia: Jurnal Ilmiah, vol. 10, no. 3. p. 134, 2019, doi: 10.31602/tji.v10i3.2119.
Nurhendi, “Sistem Informasi Broker Asuransi Pada PT. Visi Bersama Serantau,” Jurnal Inovasi Penelitian, vol. 1, no. 10. pp. 1–208, 2021.
Zakky, “Pengertian Sistem | Definisi, Unsur-Unsur, Jenis-Jenis, dan Elemennya,” Zona Referensi, 2021. https://www.zonareferensi.com/pengertian-sistem/.
T. Sutabari, Konsep Sistem Informasi. Andi, 2012.
Adhi, “Analisis Perancang Sistem,” Bab I, no. 2010. pp. 1–16, 2020.
M. Kafil, “Penerapan Metode K-Nearest Neighbors Untuk Prediksi Penjualan Berbasis Web Pada Boutiq Dealove Bondowoso,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 3, no. 2. pp. 59–66, 2019, doi: 10.36040/jati.v3i2.860.
A. Ardiana and A. EP Yunus, “SISTEM PREDIKSI PENENTUAN JENIS TANAMAN SAYURAN BERDASARKAN KONDISI MUSIM DENGAN PENDEKATAN METODE TREND MOMENT.” 2017.
R. A. R. JULEHA, “Analisa Intensitas Hujan,” no. 1. 2008.
A. Kurniawan, “Evaluasi Pengukuran Curah Hujan Antara Hasil Pengukuran Permukaan (AWS, HELLMAN, OBS) dan Hasil Estimasi (Citra Satelit =GSMaP) Di Stasiun Klimatologi Mlati Tahun 2018,” J. Geogr. Edukasi dan Lingkung., vol. 4, no. 1, pp. 1–7, 2020.
F. A. Mushi, “Curah Hujan: Pengertian, Klasifikasi, Pengukuran, dan Alat Ukur,” Forester Act, 2021. https://foresteract.com/curah-hujan/.
Tukidi, “Karakter Curah Hujan Di Indonesia,” Jurnal Geografi, vol. 7, no. 2. 2010, [Online]. Available: http://journal.unnes.ac.id/nju/index.php/JG/article/view/84.
T. N. Padilah and R. I. Adam, “Analisis Regresi Linier Berganda Dalam Estimasi Produktivitas Tanaman Padi Di Kabupaten Karawang,” FIBONACCI: Jurnal Pendidikan Matematika dan Matematika, vol. 5, no. 2. p. 117, 2019, doi: 10.24853/fbc.5.2.117-128.
Syilfi, D. Ispriyanti, and D. Safitri, “Analisis Regresi Linier Piecewise Dua Segmen,” Jurnal Gaussian, vol. 1, no. 1. pp. 219–228, 2012.
I. M. Yuliara, “Regresi linier berganda 1.,” Journal Article. pp. 1–6, 2016, [Online]. Available: http://www.mendeley.com/research/regresi-linier-berganda-1/.
F. SUSANTI, “Pengertian, Sejarah, Fitur, Kelebihan dan Kekurangan Bahasa Pemrograman R.” 2021, [Online]. Available: https://rstudio-pubs-static.s3.amazonaws.com/821986_d3a5240c1c9a4f459e47bf1043e80707.html.
Andry brew, “Data Analytics Menggunakan Orange,” Menulis Yang Terpikir. 2015, [Online]. Available: https://andrybrew.blog/2015/06/14/data-analytics-menggunakan-orange/.
E. Dewi et al., “Prediksi Curah Hujan Di Kabupaten Majalengka Dengan Menggunakan Algoritma Regresi Rainfall Prediction in Majalengka District Using Regression Algorithm,” Informasi , vol. 67, no. 1. 2019.
G. I. Merdekawati and Ismail, “Prediksi Curah Hujan Di Jakarta Berbasis Algoritma Levenberg Marquardt,” Jurnal Ilmiah Informatika Komputer, vol. 24, no. 2. pp. 116–128, 2019, doi: 10.35760/ik.2019.v24i2.2366.
A. Rachmawati, “Prediksi Curah Hujan di Kota Pontianak Menggunakan Parameter Cuaca sebagai Prediktor Pada Skala Bulanan, Dasarian dan Harian,” Positron, vol. 5, no. 2. 2015, doi: 10.26418/positron.v5i2.11755.